3.3.43 \(\int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx\) [243]

3.3.43.1 Optimal result
3.3.43.2 Mathematica [C] (verified)
3.3.43.3 Rubi [A] (warning: unable to verify)
3.3.43.4 Maple [B] (verified)
3.3.43.5 Fricas [B] (verification not implemented)
3.3.43.6 Sympy [F(-1)]
3.3.43.7 Maxima [A] (verification not implemented)
3.3.43.8 Giac [F]
3.3.43.9 Mupad [F(-1)]

3.3.43.1 Optimal result

Integrand size = 21, antiderivative size = 113 \[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=-\frac {7 d^{9/2} \arctan \left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{4 b}+\frac {7 d^{9/2} \text {arctanh}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{4 b}-\frac {7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac {d (d \cos (a+b x))^{7/2} \csc ^2(a+b x)}{2 b} \]

output
-7/4*d^(9/2)*arctan((d*cos(b*x+a))^(1/2)/d^(1/2))/b+7/4*d^(9/2)*arctanh((d 
*cos(b*x+a))^(1/2)/d^(1/2))/b-7/6*d^3*(d*cos(b*x+a))^(3/2)/b-1/2*d*(d*cos( 
b*x+a))^(7/2)*csc(b*x+a)^2/b
 
3.3.43.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.77 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.69 \[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=\frac {d^5 \left ((-5+2 \cos (2 (a+b x))) \cot ^2(a+b x)+21 \sqrt [4]{-\cot ^2(a+b x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{4},\frac {5}{4},\csc ^2(a+b x)\right )\right )}{6 b \sqrt {d \cos (a+b x)}} \]

input
Integrate[(d*Cos[a + b*x])^(9/2)*Csc[a + b*x]^3,x]
 
output
(d^5*((-5 + 2*Cos[2*(a + b*x)])*Cot[a + b*x]^2 + 21*(-Cot[a + b*x]^2)^(1/4 
)*Hypergeometric2F1[1/4, 1/4, 5/4, Csc[a + b*x]^2]))/(6*b*Sqrt[d*Cos[a + b 
*x]])
 
3.3.43.3 Rubi [A] (warning: unable to verify)

Time = 0.28 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3045, 27, 252, 262, 266, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^3(a+b x) (d \cos (a+b x))^{9/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(d \cos (a+b x))^{9/2}}{\sin (a+b x)^3}dx\)

\(\Big \downarrow \) 3045

\(\displaystyle -\frac {\int \frac {d^4 (d \cos (a+b x))^{9/2}}{\left (d^2-d^2 \cos ^2(a+b x)\right )^2}d(d \cos (a+b x))}{b d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {d^3 \int \frac {(d \cos (a+b x))^{9/2}}{\left (d^2-d^2 \cos ^2(a+b x)\right )^2}d(d \cos (a+b x))}{b}\)

\(\Big \downarrow \) 252

\(\displaystyle -\frac {d^3 \left (\frac {(d \cos (a+b x))^{7/2}}{2 \left (d^2-d^2 \cos ^2(a+b x)\right )}-\frac {7}{4} \int \frac {(d \cos (a+b x))^{5/2}}{d^2-d^2 \cos ^2(a+b x)}d(d \cos (a+b x))\right )}{b}\)

\(\Big \downarrow \) 262

\(\displaystyle -\frac {d^3 \left (\frac {(d \cos (a+b x))^{7/2}}{2 \left (d^2-d^2 \cos ^2(a+b x)\right )}-\frac {7}{4} \left (d^2 \int \frac {\sqrt {d \cos (a+b x)}}{d^2-d^2 \cos ^2(a+b x)}d(d \cos (a+b x))-\frac {2}{3} (d \cos (a+b x))^{3/2}\right )\right )}{b}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {d^3 \left (\frac {(d \cos (a+b x))^{7/2}}{2 \left (d^2-d^2 \cos ^2(a+b x)\right )}-\frac {7}{4} \left (2 d^2 \int \frac {d^2 \cos ^2(a+b x)}{d^2-d^4 \cos ^4(a+b x)}d\sqrt {d \cos (a+b x)}-\frac {2}{3} (d \cos (a+b x))^{3/2}\right )\right )}{b}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {d^3 \left (\frac {(d \cos (a+b x))^{7/2}}{2 \left (d^2-d^2 \cos ^2(a+b x)\right )}-\frac {7}{4} \left (2 d^2 \left (\frac {1}{2} \int \frac {1}{d-d^2 \cos ^2(a+b x)}d\sqrt {d \cos (a+b x)}-\frac {1}{2} \int \frac {1}{d^2 \cos ^2(a+b x)+d}d\sqrt {d \cos (a+b x)}\right )-\frac {2}{3} (d \cos (a+b x))^{3/2}\right )\right )}{b}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {d^3 \left (\frac {(d \cos (a+b x))^{7/2}}{2 \left (d^2-d^2 \cos ^2(a+b x)\right )}-\frac {7}{4} \left (2 d^2 \left (\frac {1}{2} \int \frac {1}{d-d^2 \cos ^2(a+b x)}d\sqrt {d \cos (a+b x)}-\frac {\arctan \left (\sqrt {d} \cos (a+b x)\right )}{2 \sqrt {d}}\right )-\frac {2}{3} (d \cos (a+b x))^{3/2}\right )\right )}{b}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {d^3 \left (\frac {(d \cos (a+b x))^{7/2}}{2 \left (d^2-d^2 \cos ^2(a+b x)\right )}-\frac {7}{4} \left (2 d^2 \left (\frac {\text {arctanh}\left (\sqrt {d} \cos (a+b x)\right )}{2 \sqrt {d}}-\frac {\arctan \left (\sqrt {d} \cos (a+b x)\right )}{2 \sqrt {d}}\right )-\frac {2}{3} (d \cos (a+b x))^{3/2}\right )\right )}{b}\)

input
Int[(d*Cos[a + b*x])^(9/2)*Csc[a + b*x]^3,x]
 
output
-((d^3*((d*Cos[a + b*x])^(7/2)/(2*(d^2 - d^2*Cos[a + b*x]^2)) - (7*(2*d^2* 
(-1/2*ArcTan[Sqrt[d]*Cos[a + b*x]]/Sqrt[d] + ArcTanh[Sqrt[d]*Cos[a + b*x]] 
/(2*Sqrt[d])) - (2*(d*Cos[a + b*x])^(3/2))/3))/4))/b)
 

3.3.43.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3045
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> Simp[-(a*f)^(-1)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], 
x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && 
 !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
 
3.3.43.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(370\) vs. \(2(89)=178\).

Time = 6.06 (sec) , antiderivative size = 371, normalized size of antiderivative = 3.28

method result size
default \(\frac {2 d^{4} \sqrt {d \left (2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1\right )}+\frac {7 d^{5} \ln \left (\frac {-2 d +2 \sqrt {-d}\, \sqrt {2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) d -d}}{\cos \left (\frac {b x}{2}+\frac {a}{2}\right )}\right )}{4 \sqrt {-d}}+\frac {d^{4} \sqrt {2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) d -d}}{8 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}}-\frac {4 d^{4} \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) d -d}}{3}-\frac {4 d^{4} \sqrt {2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) d -d}}{3}+\frac {7 d^{\frac {9}{2}} \ln \left (\frac {4 d \cos \left (\frac {b x}{2}+\frac {a}{2}\right )+2 \sqrt {d}\, \sqrt {-2 d \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+d}-2 d}{\cos \left (\frac {b x}{2}+\frac {a}{2}\right )-1}\right )}{8}+\frac {7 d^{\frac {9}{2}} \ln \left (\frac {-4 d \cos \left (\frac {b x}{2}+\frac {a}{2}\right )+2 \sqrt {d}\, \sqrt {-2 d \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+d}-2 d}{\cos \left (\frac {b x}{2}+\frac {a}{2}\right )+1}\right )}{8}+\frac {d^{4} \sqrt {-2 d \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+d}}{16 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )-16}-\frac {d^{4} \sqrt {-2 d \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+d}}{16 \left (\cos \left (\frac {b x}{2}+\frac {a}{2}\right )+1\right )}}{b}\) \(371\)

input
int((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x,method=_RETURNVERBOSE)
 
output
(2*d^4*(d*(2*cos(1/2*b*x+1/2*a)^2-1))^(1/2)+7/4*d^5/(-d)^(1/2)*ln((-2*d+2* 
(-d)^(1/2)*(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2))/cos(1/2*b*x+1/2*a))+1/8*d^4 
/cos(1/2*b*x+1/2*a)^2*(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2)-4/3*d^4*cos(1/2*b 
*x+1/2*a)^2*(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2)-4/3*d^4*(2*cos(1/2*b*x+1/2* 
a)^2*d-d)^(1/2)+7/8*d^(9/2)*ln((4*d*cos(1/2*b*x+1/2*a)+2*d^(1/2)*(-2*d*sin 
(1/2*b*x+1/2*a)^2+d)^(1/2)-2*d)/(cos(1/2*b*x+1/2*a)-1))+7/8*d^(9/2)*ln((-4 
*d*cos(1/2*b*x+1/2*a)+2*d^(1/2)*(-2*d*sin(1/2*b*x+1/2*a)^2+d)^(1/2)-2*d)/( 
cos(1/2*b*x+1/2*a)+1))+1/16*d^4/(cos(1/2*b*x+1/2*a)-1)*(-2*d*sin(1/2*b*x+1 
/2*a)^2+d)^(1/2)-1/16*d^4/(cos(1/2*b*x+1/2*a)+1)*(-2*d*sin(1/2*b*x+1/2*a)^ 
2+d)^(1/2))/b
 
3.3.43.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 199 vs. \(2 (89) = 178\).

Time = 0.42 (sec) , antiderivative size = 405, normalized size of antiderivative = 3.58 \[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=\left [-\frac {42 \, {\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt {-d} \arctan \left (\frac {2 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {-d}}{d \cos \left (b x + a\right ) + d}\right ) - 21 \, {\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt {-d} \log \left (-\frac {d \cos \left (b x + a\right )^{2} - 4 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {-d} {\left (\cos \left (b x + a\right ) - 1\right )} - 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1}\right ) + 8 \, {\left (4 \, d^{4} \cos \left (b x + a\right )^{3} - 7 \, d^{4} \cos \left (b x + a\right )\right )} \sqrt {d \cos \left (b x + a\right )}}{48 \, {\left (b \cos \left (b x + a\right )^{2} - b\right )}}, \frac {42 \, {\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt {d} \arctan \left (\frac {2 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {d}}{d \cos \left (b x + a\right ) - d}\right ) + 21 \, {\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt {d} \log \left (-\frac {d \cos \left (b x + a\right )^{2} + 4 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {d} {\left (\cos \left (b x + a\right ) + 1\right )} + 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1}\right ) - 8 \, {\left (4 \, d^{4} \cos \left (b x + a\right )^{3} - 7 \, d^{4} \cos \left (b x + a\right )\right )} \sqrt {d \cos \left (b x + a\right )}}{48 \, {\left (b \cos \left (b x + a\right )^{2} - b\right )}}\right ] \]

input
integrate((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x, algorithm="fricas")
 
output
[-1/48*(42*(d^4*cos(b*x + a)^2 - d^4)*sqrt(-d)*arctan(2*sqrt(d*cos(b*x + a 
))*sqrt(-d)/(d*cos(b*x + a) + d)) - 21*(d^4*cos(b*x + a)^2 - d^4)*sqrt(-d) 
*log(-(d*cos(b*x + a)^2 - 4*sqrt(d*cos(b*x + a))*sqrt(-d)*(cos(b*x + a) - 
1) - 6*d*cos(b*x + a) + d)/(cos(b*x + a)^2 + 2*cos(b*x + a) + 1)) + 8*(4*d 
^4*cos(b*x + a)^3 - 7*d^4*cos(b*x + a))*sqrt(d*cos(b*x + a)))/(b*cos(b*x + 
 a)^2 - b), 1/48*(42*(d^4*cos(b*x + a)^2 - d^4)*sqrt(d)*arctan(2*sqrt(d*co 
s(b*x + a))*sqrt(d)/(d*cos(b*x + a) - d)) + 21*(d^4*cos(b*x + a)^2 - d^4)* 
sqrt(d)*log(-(d*cos(b*x + a)^2 + 4*sqrt(d*cos(b*x + a))*sqrt(d)*(cos(b*x + 
 a) + 1) + 6*d*cos(b*x + a) + d)/(cos(b*x + a)^2 - 2*cos(b*x + a) + 1)) - 
8*(4*d^4*cos(b*x + a)^3 - 7*d^4*cos(b*x + a))*sqrt(d*cos(b*x + a)))/(b*cos 
(b*x + a)^2 - b)]
 
3.3.43.6 Sympy [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=\text {Timed out} \]

input
integrate((d*cos(b*x+a))**(9/2)*csc(b*x+a)**3,x)
 
output
Timed out
 
3.3.43.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.04 \[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=\frac {\frac {12 \, \left (d \cos \left (b x + a\right )\right )^{\frac {3}{2}} d^{6}}{d^{2} \cos \left (b x + a\right )^{2} - d^{2}} - 42 \, d^{\frac {11}{2}} \arctan \left (\frac {\sqrt {d \cos \left (b x + a\right )}}{\sqrt {d}}\right ) - 21 \, d^{\frac {11}{2}} \log \left (\frac {\sqrt {d \cos \left (b x + a\right )} - \sqrt {d}}{\sqrt {d \cos \left (b x + a\right )} + \sqrt {d}}\right ) - 16 \, \left (d \cos \left (b x + a\right )\right )^{\frac {3}{2}} d^{4}}{24 \, b d} \]

input
integrate((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x, algorithm="maxima")
 
output
1/24*(12*(d*cos(b*x + a))^(3/2)*d^6/(d^2*cos(b*x + a)^2 - d^2) - 42*d^(11/ 
2)*arctan(sqrt(d*cos(b*x + a))/sqrt(d)) - 21*d^(11/2)*log((sqrt(d*cos(b*x 
+ a)) - sqrt(d))/(sqrt(d*cos(b*x + a)) + sqrt(d))) - 16*(d*cos(b*x + a))^( 
3/2)*d^4)/(b*d)
 
3.3.43.8 Giac [F]

\[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {9}{2}} \csc \left (b x + a\right )^{3} \,d x } \]

input
integrate((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x, algorithm="giac")
 
output
integrate((d*cos(b*x + a))^(9/2)*csc(b*x + a)^3, x)
 
3.3.43.9 Mupad [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx=\int \frac {{\left (d\,\cos \left (a+b\,x\right )\right )}^{9/2}}{{\sin \left (a+b\,x\right )}^3} \,d x \]

input
int((d*cos(a + b*x))^(9/2)/sin(a + b*x)^3,x)
 
output
int((d*cos(a + b*x))^(9/2)/sin(a + b*x)^3, x)